CX3CR1 regulates the maintenance of KLRG1+ NK cells into the bone marrow by promoting their entry into circulation.
نویسندگان
چکیده
NK cell differentiation mainly occurs in the bone marrow (BM) where a critical role in the regulation of developing lymphocyte distribution is played by members of the chemokine receptor family. In mouse, the chemokine receptor CX3CR1 identifies a late stage of NK cell development characterized by decreased effector functions and expression of the inhibitory receptor KLRG1. The role of CX3CR1 in the regulation of differentiation and positioning of NK cell subsets in the BM is not known. In this study, we found that CX3CR1 deficiency leads to accumulation of KLRG1(+) NK cells in BM during steady-state conditions. The NK cell subset that expresses the receptor in wild-type mice was expanded in several tissues of CX3CR1-deficient mice, and NK cell degranulation in response to sensitive target cell stimulation was enhanced, suggesting a regulatory role of CX3CR1 in NK cell positioning and differentiation in BM. Indeed, the observed NK cell expansion was not due to altered turnover rate, whereas it was associated with preferential accumulation in the BM parenchyma. In addition, a role of CX3CR1 in NK cell trafficking from BM and spleen was evidenced also during inflammation, as CX3CR1-deficient NK cells were more prompt to exit the BM and did not decrease in spleen in response to polyinosinic-polycytidylic acid-promoted hepatitis. Overall, our results evidenced a relevant role of CX3CR1 in the regulation of NK cell subset exit from BM during homeostasis, and suggest that defect in the CX3CR1/CX3CL1 axis alters NK cell trafficking and functional response during inflammatory conditions.
منابع مشابه
CX3CR1 expression defines 2 KLRG1+ mouse NK-cell subsets with distinct functional properties and positioning in the bone marrow.
During development in the bone marrow (BM), NK-cell positioning within specific niches can be influenced by expression of chemokine or adhesion receptors. We previously demonstrated that the maintenance in the BM of selected NK-cell subsets is regulated by the CXCR4/CXCL12 axis. In the present study, we showed that CX3CR1 is prevalently expressed on KLRG1(+) NK cells, a subset considered termin...
متن کاملIL-15 and IL-2 oppositely regulate expression of the chemokine receptor CX3CR1.
The chemokine receptor CX3CR1 (CX3C chemokine receptor 1) is expressed in mouse blood on natural killer (NK) cells and on monocytes. Because interleukin-15 (IL-15) is an essential cytokine for NK cell development and maintenance, we hypothesized that it may induce CX3CR1 expression on this cell type. In contrast, we found that in primary mouse bone marrow-derived NK cells IL-15 specifically inh...
متن کاملDifferential chemotactic receptor requirements for NK cell subset trafficking into bone marrow
Responsiveness of maturing natural killer (NK) cells to chemotactic molecules directly affect their retention and relocation in selected bone marrow (BM) microenvironment during development, as well as their localization at sites of immune response during inflammatory diseases. BM is the main site of NK cell generation, providing microenvironmental signals required to sustain cell proliferation...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 191 11 شماره
صفحات -
تاریخ انتشار 2013